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Over a hundred years ago Galton reported on the uncanny accuracy of the median estimate of the weight
of an ox, as judged by spectators at a country fair [1]. Since then, the notion that the ‘wisdom of the crowd’
is superior to any individual has itself become a piece of crowd wisdom, raising expectations that web-based
opinion aggregation might replace expert judgment as a source of policy guidance [2, 3]. However, distilling
the best answer from diverse opinions is challenging when most people hold an incorrect view [4]. We pro-
pose a method based on a new definition of the best answer: it is the one given by respondents who would
be least surprised by the true answer if it were revealed. Since this definition is of interest only when the true
answer is unknown, algorithmic implementation is nontrivial. We solve this problem by asking respondents
not only to answer the question, but also to predict the distribution of others’ answers. Previously, it was
shown that this secondary information can be used to create incentives for honest responding [5]. Here we
prove that this information can also be used to identify which answer is the best answer by our new defi-
nition. Unlike multi-item analysis [6, 7] or boosting [8], our method can be applied to a unique question.
This capability is critical in knowledge domains that lack consensus about which historical precedents might
establish experts’ relative track records. Unlike Bayesian models [9, 10, 11, 12, 13] our method does not
require user-specified prior probabilities, nor does it require information sharing that might lead to “group-
think” [14]. An experiment demonstrates that the method outperforms algorithms based on democratic or
confidence-weighted voting [15, 16, 17, 18, 19].

Imagine that you have no knowledge of U.S. geography, and are confronted with the question

Philadelphia is the capital of Pennsylvania: True or False ?

To find the answer, you pose the question to many people, trusting that the most common answer will be
correct. Unfortunately, most people give the incorrect answer (“True”), as shown by the data in Figure
1a. Why is the majority wrong here? Someone who answers “True” may know only that Philadelphia is
an important city in Pennsylvania, and reasonably conclude that Philadelphia is the capital. Someone who
answers “False” likely possesses a crucial additional piece of evidence, that the capital is actually Harrisburg.
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Figure 1: A question that voting (2) fails to answer correctly, while the LST principle (1) succeeds (data
are from Study 3 described in text). a The wrong answer wins by a large margin in a democratic vote. b
Respondents are asked to provide estimates of confidence (0.5 to 1), which are combined with their True/False
answers to yield estimates of the probability (0 to 1) that Philadelphia is the capital. The histograms show that
the correct minority (top) and the incorrect majority (bottom) are roughly equally confident in their answers,
so weighting the votes by confidence does not change the outcome. c Respondents are asked to predict the
frequency of the answer “True.” Those who answer “False” believe that others will answer “True” (top), but
not vice versa (bottom). To apply the LST principle, we estimate from (a), Pr [X s = False|Ω = i∗] = 0.33,
Pr [X s = True|Ω = i∗] = 0.67, and from (c), Pr [X s = True|X r = False] = 0.76, Pr [X s = False|X r = True] =
0.22. Inserting into (4) yields Pr [Ω = i∗|X r = False]/Pr [Ω = i∗|X s = True] = 1.70, showing that respondents
endorsing the correct answer “False” would be less surprised by the truth.

This elementary example reveals a limitation of the one person, one vote approach. If each respondent’s
answer is determined by the evidence available to her, the majority verdict will be tilted toward the most
widely available evidence, which is an unreliable indicator of truth. The same bias is potentially present
in real-world settings, when experts’ opinions are averaged to produce probabilistic assessments of risk,
forecasts of key economic variables, or numerical ratings of research proposals in peer review. In all such
cases, Galton’s method of counting opinions equally may produce a result that favors shallow information,
accessible to all, over specialized or novel information that is understood only by a minority.

To avoid this problem, one might attempt to identify individuals who are most competent to answer the
question, or who have the best evidence. A popular approach is to ask respondents to report their confi-
dence [13], typically by a number between 0.5 (no confidence) and 1 (certainty). From their confidence and
True/False answers one can infer respondents’ subjective probability estimates that, e.g., Philadelphia is the
capital of Pennsylvania. Averaging these probabilities across respondents produces a confidence-weighted
vote. This will improve on an unweighted vote, but only if those who answer correctly are also much more
confident, which is neither the case in our example, nor more generally [4]. As shown by Figure 1b, the
distribution of probabilities for those who answer “True” is approximately the mirror image of the distribu-
tion for those who answer “False.” Since confidence is roughly symmetric between the two groups, it cannot
override the strong majority in favor of the wrong answer.

Rather than elicit a confidence estimate, our method will ask each respondent to predict how others will
respond. For a True/False question, the prediction is a number between 0 and 1 indicating the fraction of
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respondents who will answer “True.” As shown in Figure 1c, those who answer “True” to the Philadelphia
question predict that most people will agree and answer “True.” On the other hand, those who answer “False”
tend to predict that most people will disagree and hence answer “True.” This prediction presumably reflects
superior knowledge: Respondents who believe that Harrisburg is the capital tend to realize that most people
will not know this. The asymmetry between the distributions in Figure 1c is marked, suggesting that predic-
tions of others’ answers could provide a signal that is strong enough to override majority opinion. To make
use of this information, however, we need a precise definition of the notion of best evidence and best answer.

Consider a probabilistic model in which the state Ω of the world is a random variable taking on values
in the set {1, . . . ,m} of possible answers to a multiple choice question. The answer X r given by respondent
r is likewise a random variable taking on values in the same set. We assume that the answer is based on a
hidden variable, the “signal” or “evidence” available to the respondent. Each respondent reasons correctly
from the evidence available to her, and answers honestly. We further assume that respondents with different
answers have access to different evidence, and respondents who give the same answer do so based on the
same evidence. Therefore a respondent r who answers k assigns probabilities Pr [Ω = i|X r = k] to possible
answers i, and this function does not depend on r.

The true value i∗ is unknown. If it were revealed, then, under the assumptions of the above model,
the probability Pr [Ω = i∗|X r = k] would measure (inversely) the surprise of any respondent r who selected
answer k. We define the “best answer” as the one given by respondents who would be “least surprised by the
truth” (hereafter LST) or

argmax
k

Pr [Ω = i∗|X r = k] (1)

By our assumptions, these are also the respondents who possess the best evidence. The best answer to the
Philadelphia question should be correct, as those who believe that Philadelphia is the capital will be more
surprised by the truth than those who believe that Philadelphia is not the capital. The best answer is not
infallible, because evidence unavailable to any respondent might tip the balance the other way. Nevertheless,
on average it should be more accurate than the democratic principle, which selects the answer most likely to
be offered by respondents:

argmax
k

Pr [X r = k|Ω = i∗] (2)

The obvious advantage of (2) is that the probabilities can be readily estimated from the relative frequencies
of answers even without knowledge of i∗, as answers are by definition sampled from the true state-of-the-
world (e.g., in which Harrisburg is the capital of Pennsylvania). As for (1), procedures do exist for eliciting
subjective probability distributions over possible states i [13], but (1) requires these probabilities specifically
for the unknown value i= i∗. To circumvent this difficulty, we note first that finding the maximum in principle
(1) can be done by comparing Pr [Ω = i∗|X r = k] and Pr [Ω = i∗|X s = j] for all answers j and k. Using Bayes’
Rule, the ratio between these probabilities can be rewritten as

Pr [Ω = i∗|X r = k]
Pr [Ω = i∗|X s = j]

=
Pr [X r = k|Ω = i∗]
Pr [X s = j|Ω = i∗]

Pr [X s = j]
Pr [X r = k]

(3)

=
Pr [X r = k|Ω = i∗]
Pr [X s = j|Ω = i∗]

Pr [X s = j|X r = k]
Pr [X r = k|X s = j]

(4)

In the last expression, Pr [Ω = i∗|X r = k] has been eliminated in favor of Pr [X r = k|Ω = i∗]. The latter prob-
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ability is the same as the one that appears in the majority answer (2), and can be estimated by the frequency
of answer k. This simplification comes at the cost of introducing Pr [X r = k|X s = j]. We will assume that
this probability can be estimated by asking someone who answers j to predict the frequency of answer k (see
Figure 1).

Consider how this idea works for the Philadelphia question. The answer k =“False” is less common
than j =“True”, so the first ratio in (4) is less than one, and the majority answer (2) is incorrect. On the
other hand, the second ratio is greater than one, because of the asymmetry in predictions in Figure 1c, and is
actually strong enough to override majority opinion.

For a question with more than two possible answers, it is useful to convert the pairwise comparisons of
(4) back into a maximum principle. Taking the logarithm of (4) and performing a weighted sum over j yields

logPr [Ω = i∗|X r = k] = logPr [X r = k|Ω = i∗]+∑
j

w j log
Pr [X s = j|X r = k]
Pr [X r = k|X s = j]

+∑
j

w j log
Pr [Ω = i∗|X s = j]
Pr [X s = j|Ω = i∗]

(5)

This follows from (4) for any set of weights w j satisfying ∑ j w j = 1. Since the last term does not depend on
k, the best answer is

argmax
k

{
logPr [X r = k|Ω = i∗]+∑

j
w j log

Pr [X s = j|X r = k]
Pr [X r = k|X s = j]

}
(6)

For a practical algorithm that identifies the best answer, we estimate the probabilities in (6) from a pop-
ulation of respondents. Let xr

k ∈ {0,1} indicate whether respondent r endorsed answer k (xr
k = 1) , and yr

k

her prediction of the fraction of respondents endorsing answer k. If we estimate Pr [X r = k|Ω = i∗] using the
arithmetic mean, x̄k = n−1

∑r xr
k, then Eq. (6) takes the form

argmax
k

{
log x̄k +∑

j
w j log

ȳ jk

ȳk j

}
(7)

where the estimate ȳk j of Pr [X r = k|X s = j] is based on the predictions ys
k of respondents s who en-

dorsed answer j. This could be the arithmetic mean ȳk j = (nx̄ j)
−1

∑s xs
jy

s
k or the geometric mean log ȳk j =

(nx̄ j)
−1

∑s xs
j logys

k. The choice of weights w j only matters in the case of inconsistencies between the pair-
wise comparisons. To resolve inconsistencies, one could weight answers equally, w j = 1/m, or, alternatively,
weight respondents equally, w j = x̄ j. In the empirical results below, we compute geometric means of predic-
tions and weight respondents equally, and refer to this as the LST algorithm.

To validate the algorithm, we conducted surveys of knowledge of all fifty US state capitals. Each ques-
tion was like the Philadelphia one above, where the named city was always the most populous in the state.
Respondents endorsed “True” or “False” and predicted the distribution of votes by other respondents. The
test has some richness because problems range in difficulty, and individual states are challenging for a va-
riety of different reasons. The prominence of a city is sometimes misleading (Philadelphia-Pennsylvania),
and sometimes a valid cue (Boston-Massachusetts), and many less populous states have no prominent city.
Surveys were administered to three groups of respondents at MIT and Princeton. The True-False votes of the
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respondents were tallied for each question, and the majority decision was correct on only 31 states in Study
1 (n = 51), 38 states in Study 2 (n = 32), and 31 states in Study 3 (n = 33) (ties counted as 0.5 correct).
The LST answers were consistently more accurate, reducing the number of errors from 19 to 9 in Study
1 (matched pair t49 = 2.45, p < .01), from 12 to 6 in Study 2 (t49 = 1.69, p < .05), and from 19 to 4 in
Study 3 (t49 = 4.40, p < .001). Our basic empirical finding, that LST outperforms democratic voting, is thus
replicated by three separate studies.

In order to compare LST with confidence-weighted voting, Study 3 went beyond the first two studies
and asked respondents to report their confidence with a number from 0.5 to 1, as described earlier and in
Figure 1. Weighting answers by confidence is indeed more accurate than majority opinion, reducing the
number of errors from 19 to 13 (t49 = 2.86, p < .01), but is still less accurate than LST (t49 = 2.64, p < .02).
More extreme forms of confidence weighting, such as a policy of only counting the answers of individuals
that claim to know the answer for sure (100% confident), or selecting the answer whose adherents are most
confident, are likewise not as accurate as LST (Table 1).

For complex, substantive questions, we may prefer a probabilistic answer as a quantitative summary of all
available evidence. An estimate of the probability that a city is the capital can be imputed to each respondent
based on the True/False answers and confidence estimates collected in Study 3 (Figure 1b). The LST algo-
rithm requires that these probability estimates be discretized and then treated as answers to a multiple choice
question. The discretization was done by dividing the [0,1] interval into uniform bins or into nonuniform bins
using a scalar quantization algorithm. In Study 3, each respondent was asked to predict the average of oth-
ers’ confidence estimates. This prediction, along with the prediction of the distribution of True/False votes,
was used to impute a prediction of the entire distribution of probability estimates. The algorithm selected a
bin, and its midpoint served as the best probability according to the LST definition. We compared this with
averaging respondents’ probabilities.

We found (Table 1) that LST probabilities were more accurate than average probabilities. This was not
surprising for questions like Philadelphia-Pennsylvania, for which majority opinion was incorrect. More in-
terestingly, LST outperformed probability averaging even on majority-solvable problems, defined as those for
which majority opinion was correct in both Studies 1 and 2. For example, the Jackson-Mississippi question
was majority-solvable, but most respondents found it difficult, as judged by their low average confidence.
LST not only answered this question correctly, but also more confidently. Other algorithms that put more
weight on confidence, such as the logarithmic pool [13] or retaining only the most confident answers, also
outperformed probability averaging on majority-solvable problems, but not on majority-unsolvable problems
like Philadelphia-Pennsylvania.

In (7), we proposed estimating Pr [X s = k|X r = j] by averaging the predictions of those respondents who
answered j. In doing so, we regarded the fluctuations in the predictions between respondents giving the
same answer as noise. Alternatively, fluctuations can be regarded as a source of additional information
about individual expertise. The LST algorithm (the version of Eq. 7 with w j = x̄ j and geometric means of
predictions) can be rewritten as

argmax
k

{
1

nx̄k
∑
r

xr
kur
}

(8)
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a. b.

Figure 2: Scoring the expertise of individual respondents. a The accuracy of a respondent across all 50 states
is uncorrelated with her conformity to conventional wisdom, defined as the number of times he votes with
the majority. b Accuracy is highly correlated with the individual score ur of (9) cumulated across fifty states.

where we define a score for each respondent r as

ur = ∑
s

∑
k, j

xr
kxs

j log
x̄kyr

j

x̄ jys
k
= ∑

k
xr

k log
x̄k

ȳk
−∑

j
x̄ j log

x̄ j

yr
j

(9)

and ȳ j is the geometric mean of predicted frequencies of answer j, log ȳ j = n−1
∑r logyr

j. For respondents
who give the same answer, the first term of the score is the same, but the second term (a relative entropy) is
higher for those who are better able to predict the actual distribution of answers. If the score is an accurate
measure of individual expertise, the best answer might be that of the single respondent with the highest score,
rather than the LST algorithm, which selects the answer endorsed by the respondents with the highest average
score as in (8). We found that the accuracy of the top scoring person was comparable to the LST algorithm
(Table 1).

Respondents’ individual scores across multiple questions provide an alternative measure of expertise.
Figure 2, right panel, shows that the score of an individual respondent, averaged across all 50 states, is
highly correlated with his or her objective accuracy (Study 3: r = 0.82, p < .001). For comparison, we also
computed a conventional wisdom (CW) index, defined as the number of states for which a respondent votes
with the majority for that state. Because the majority is correct more than half the time, one might expect
that respondents with high CW scores will also get more answers correct. However, accuracy and CW are
uncorrelated, as shown by the left panel of Figure 2. The score also outperformed several other approaches,
such as principal components analysis (SupplementaryInformation).

While these results provide a critical initial test, we are ultimately interested in applying the algorithm to
substantive problems, such as assessments of risk, political and economic forecasts, or expert evaluations of

6



competing proposals. Because a verdict in these settings has implications for policy, and truth is difficult or
impossible to verify, it is important to guard against manipulation by respondents who may have their own
interests at stake. The possibility of manipulation has not been considered in this paper, as we have assumed
that respondents gave honest and careful answers. We note, however, that the expertise score of Eq. (9) is
identical to the payoff of a game that incentivizes respondents to give truthful answers to questions, even if
those answers are nonverifiable. In the context of its application to truthfulness, the score (9) was called the
Bayesian Truth Serum or BTS score [5, 20].

This scoring system has features in common with prediction markets, which are gaining in popularity
as instruments of crowd-sourced forecasting [21]. Like market returns, the scores in Eq. (9) sum to zero,
thus promoting a meritocratic outcome by an open democratic contest. Furthermore, in both cases, success
requires distinguishing one’s own information from information that is widely shared. With markets, this
challenge is implicit — by purchasing a security, a person is betting that some relevant information is not
adequately captured by the current price. Our approach makes the distinction explicit, by requesting a per-
sonal opinion and a prediction about the crowd. At the same time, we remove a limitation of prediction
markets, which is the required existence of a verifiable event. This, together with the relatively simple input
requirements, greatly expands the nature and number of questions that can be answered in a short session.
Therefore, in combination with the result on incentives [5], the present work points to an integrated, practical
solution to the problems of encouraging honesty and identifying truth.
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Average probability assigned to the
correct answer

Error measure

Aggregation method
All 50
States

30 majority-
solvable

states

20 majority-
unsolvable

states

Number of
incorrect

answers out
of 50

Quadratic
error (Brier

score) Log score
Linear pool 61.4 70.1 48.3 13 0.17 -0.52

0/1 Majority vote N/A N/A N/A 19* N/A N/A
Logarithmic pool 67.1*** 79.8*** 48.1 14 0.15* -0.46**

Counting only 100%
confident

70.7*** 83.8*** 50.9 11.5 0.15 -0.43*

LST algorithm, T/F
answers only

N/A N/A N/A 4* N/A N/A

Top scorer by ur in each
state

81.5*** 85.4* 75.6*** 4* 0.08** -0.36*

Average of top 3 scorers
by ur in each state

81.5*** 86.7*** 73.7*** 2.5** 0.06*** -0.24***

Top scorer by ur across
all 50 states

98.8*** 100.0*** 97.0*** 0.5*** 0.01*** -0.02***

Probabilistic LST with 2
equal bins

70.8* 79.0 58.6 12 0.15 -0.49

Probabilistic LST with 3
equal bins

85.3*** 85.6* 84.9*** 3* 0.07** -0.29*

Probabilistic LST with 5
equal bins

81.8*** 78.7 86.6*** 7 0.14 -0.59

Probabilistic LST with 2
scalar-quantized bins

81.7*** 85.2* 76.6*** 4* 0.09* -0.34*

Probabilistic LST with 3
scalar-quantized bins

84.9*** 88.5*** 79.5*** 5* 0.10 -0.38

Probabilistic LST with 5
scalar-quantized bins

92.7*** 95.6*** 88.4*** 3* 0.06** -0.31**

Table 1: Performance of LST compared to baseline aggregation methods. The table shows the per-
formance of different aggregation methods on data collected in Study 3. Results are shown for baseline
aggregation methods (linear and log pools), different implementations of the LST algorithm, and individual
respondent BTS score (9). This includes LST applied to the binary True/False answer, and then averaging the
probability of the identified experts either per question or across questions. They also include probabilistic
LST with equal-sized or scalar-quantized bins. LST algorithms outperform the baseline methods with respect
to Brier scores [13], log scores, and the probability they assign to the correct answer. The performance of the
algorithms is shown separately on majority-solvable and unsolvable states where solvable states are defined
as those for which the majority decision was correct in both Studies 1 and 2. By this definition there were 30
easy and 20 hard states. Significance assessed against the Linear pool, two-tailed matched-pair (t49), *=<.05,
**=<.01, ***=<.001.
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