Backprop for recurrent
networks

Sebastian Seung

Other flavors of backprop

! Recurrent backprop

—Ifor training steady states of a recurrent
network

! Backprop-through-time

—Ifor training trajectories of a recurrent
network

Steady state of a recurrent
network

ol Recurrent network

EWU-XJ. + bl.)
j

—Ifeedforward network is a special case

| Goal: maximize some function of the
activity vector

xi=f

IIV[I/%)XR(X)

Implicit function theorem

! X is an implicit function of W and b

! defined as the solution of F(x, W, b) = 0
'where F(x,W,b) =x—f(Wx + b)

! assuming nonsingular Jacobian OF;/0x
! This is a local definition.

Recurrent backpropagation

| Find steady state X =f(Wx + b)

| Calculate slopes D =diag{f'(Wx +b)}

| Solve for sensitivity (D_1 - WT)ﬁ B %

I Weight update AW =nux’

Sensitivity lemma

OR OR
oW, b, "’
el |t is sufficient to calculate the derivative

with respect to the biases.

! Recurrent backprop is a way of
calculating the sensitivities

OR

_ i\ti
b

Input as a function of output

! What input b is required to make x a
steady state?

b = f_l(K)—EVVqu
J

! This Is unique, even when output is not
a unique function of the input!

Jacobian matrix

Composition of functions

! This composition of functions may seem
more natural

b—x— R

! But this composition can also be

defined
X —b— R

! Both definitions are locally valid.

Chain rule
x! bl R

IIR _ # IIR Ilbi
le ‘ Ilb. le

J i l J

- #, (0 sW),
- (D swh)

X

Trajectory learning

ol Initialize at x(O) iterate for T time steps

\
xi(t) =f EWU j

/

| Goal: maximize some function of the
time series of activity vectors

maXR(X(l)E ,X(T))

W.b

Backpropagation through time

! Multilayer perceptron
—1Same number of neurons in each layer

—1Same weights and biases in each layer
(weight-sharing)

Forward pass
! Initial condition x(0)
u(z) =Wx(z-1)+b(z)

x(1) = £(u(r)

Backward pass

| Final condition @(7+1)=0

OR
x(1)

>
—
A N
N—
I

=W'a(r+1)+

Welight update

AW = nzﬁ(z‘)x(r -1)" Ab =n2ﬁ(t)

Sensitivity lemma

| Suppose that weights and biases are
functions of time:

()
x,<t>=f\zvvi,-<r>x]<r—1>+bl<t>/
JR R (0

oW, (1)~ ab 1)

Sensitivity lemma

ol If the weights and biases are constant
in time,

oR oR oR oR
W, 2 oW, (1) b, 2 ob,(1)

5

IR
- E b, (1) xj(t)

5

4

Input as a function of output

x(#) = f(Wx(r-1)+b(z))
b(1) f_l(X(t))—WX(t—l)

(1),x(2),....x(T =1),x(T)
AN N
).b(2),....b(T =1),b(T)

1),X T
.
(1),b T

|
b

Jacobian matrix

b(r) =f"!(x())" Wx(¢" 1)

1) o (i
#56.(2") _$tt'(D (t))zj Wij$t"1,t'

D(t) = diag{f ‘(/M/X(t " 1)+ b(t))}

Chain rule

R E JR ob,(1)

ox (') < ab,(1) ax (¢

It]

Lagrangian method

! Application of the chain rule can be
confusing.

! Lagrange multipliers provide

—la “turn the crank™ method of calculating
gradients

—lanother interpretation of the backward pass

Lagrangian

Lagrange

multiplier
~
L(x,a,W,b) = R(x) — a' [f'(x) — Wx — b]
Sy —

steady state
constraint

Stationary point

x"(W,b) and t" (W, b) such that

oL _ oy
0 = aﬁ_f (x) —Wx —b
0 — oL OR D'l WT)i

Ox Ox

The Lagrangian equals the
reward function at a stationary
point

R(x* (W, b)) = L(x*(W,b), a* (W, b), W, b)

Sensitivities of the Lagrangian
and reward function

| All derivatives are evaluated at the
stationary point.

0
aR }/ oL aa/ aL

/%ab /Mab - b,

ol Similarly OR

8Wi j 6‘Wi j

The reward gradients

o, | 0L | g
WR(X (W, b)) — 0W — uUuXxX
o oL .

I where it’ s understood that

u=1u(W,b) x =x (W, b)

