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Other flavors of backprop 

•! Recurrent backprop 
–!for training steady states of a recurrent 

network 
•! Backprop-through-time 

–!for training trajectories of a recurrent 
network 



Steady state of a recurrent 
network 

•! Recurrent network 

–!feedforward network is a special case 
•! Goal: maximize some function of the 

activity vector € 

xi = f Wij x j + bi
j
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Implicit function theorem 

•! x is an implicit function of W and b 
•! defined as the solution of 
•! where 
•! assuming nonsingular Jacobian  
•! This is a local definition.  

�Fi/�xj

F(x, W,b) = 0
F(x, W,b) ⇥ x� f(Wx + b)



Recurrent backpropagation 

•! Find steady state 

•! Calculate slopes 

•! Solve for sensitivity 

•! Weight update 

!  

x = f Wx + b( )

€ 

D−1 −W T( ) ˆ u = ∂R
∂x€ 

D = diag " f Wx + b( ){ }

€ 

ΔW =η ˆ u xT



Sensitivity lemma 

 
•! It is sufficient to calculate the derivative 

with respect to the biases. 
•! Recurrent backprop is a way of 

calculating the sensitivities 
€ 

∂R
∂Wij

=
∂R
∂bi

x j

€ 

∂R
∂bi

≡ ˆ u i



Input as a function of output 

•! What input b is required to make x a 
steady state? 

•! This is unique, even when output is not 
a unique function of the input! 

€ 

bi = f −1 xi( )− Wij xj
j

∑



Jacobian matrix 

€ 

bi = f −1 xi( ) − Wij x j
j
∑

∂bi
∂x j

= f −1% xi( )δij −Wij

= D−1 −W( )ij



Composition of functions 

•! This composition of functions may seem 
more natural 

 
•! But this composition can also be 

defined 

•! Both definitions are locally valid.  

b� x� R

x� b� R



Chain rule 

!  

"R
" x j

=
"R
"bi

"bi
" x ji

#

=
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"bi

D$1 $W( )ij
i

#
"R
"x

= D$1 $W T( ) "R
"b

x ! b ! R



Trajectory learning 

•! Initialize at x(0), iterate for T time steps 

•! Goal: maximize some function of the 
time series of activity vectors 

€ 

xi t( ) = f Wij x j t −1( ) + bi
j
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W ,b

R x 1( ),É ,x T( )( )



Backpropagation through time 

•! Multilayer perceptron 
–!Same number of neurons in each layer 
–!Same weights and biases in each layer 

(weight-sharing) 

  

€ 

x 0( )    W ,b    " → " " x 1( )    W ,b    " → " " !    W ,b    " → " " x T( )

  

€ 

ˆ u 1( ) W T

← # # ˆ u 2( ) W T

← # # ! W T

← # # ˆ u T +1( )



Forward pass 

•! Initial condition x(0) 

€ 

x t( ) = f u t( )( )
€ 

u t( ) =Wx t −1( ) + b t( )



Backward pass 

•! Final condition 

€ 

ˆ x t( ) =W T ˆ u t +1( ) +
∂R
∂x t( )

€ 

ˆ u T +1( ) = 0

€ 

ˆ u t( ) = D t( ) ˆ x t( )



Weight update 

€ 

ΔW =η ˆ u t( )
t
∑ x t −1( )T Δb =η ˆ u t( )

t
∑



Sensitivity lemma 

•! Suppose that weights and biases are 
functions of time: 

€ 

xi t( ) = f Wij t( )x j t −1( ) +bi t( )
j
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∂R
∂Wij t( )

=
∂R
∂bi t( )

x j t( )



Sensitivity lemma 

•! If the weights and biases are constant 
in time, 

€ 

∂R
∂Wij

=
∂R

∂Wij t( )t
∑

=
∂R
∂bi t( )

x j t( )
t
∑

€ 

∂R
∂bi

=
∂R
∂bi t( )t

∑



Input as a function of output 

€ 

x t( ) = f Wx t −1( ) + b t( )( )
b t( ) = f −1 x t( )( ) −Wx t −1( )

  

€ 

x 1( ),x 2( ),…,x T −1( ),x T( )

  

€ 

b 1( ),b 2( ),…,b T −1( ),b T( )



Jacobian matrix 

!  

b t( ) = f " 1 x t( )( ) " Wx t " 1( )
#bi t( )
#x j t'( )

= $tt ' D
" 1 t( )( )ij " Wij$t"1,t '

D t( ) = diag % f Wx t " 1( ) + b t( )( ){ }



Chain rule 

€ 

∂R
∂x j # t ( )

=
∂R
∂bi t( )

∂bi t( )
∂x j # t ( )i,t

∑

= ˆ u i # t ( )
i
∑ D−1 # t ( )( )ij

− ˆ u i t'+1( )Wij
i
∑

∂R
∂x t( )

= D−1 t( ) ˆ u t( ) −W T ˆ u t +1( )



Lagrangian method 

•! Application of the chain rule can be 
confusing. 

•! Lagrange multipliers provide 
–!a “turn the crank” method of calculating 

gradients 
–!another interpretation of the backward pass 



Lagrangian 

Lagrange 
multiplier 

steady state 
constraint 

L(x, û, W,b) = R(x)�
�⌅⇤⇥
ûT [f�1(x)�Wx� b]⇤ ⇥� ⌅



Stationary point 

x�(W,b) and û�(W,b) such that

0 = ��L
�û

= f ! 1(x)�Wx� b

0 =
�L
�x

=
�R
�x

� (D ! 1 �W T )û



The Lagrangian equals the 
reward function at a stationary 

point 

R(x�(W,b)) = L(x�(W,b), û�(W,b), W,b)



Sensitivities of the Lagrangian 
and reward function 

•! All derivatives are evaluated at the 
stationary point. 

•! Similarly 
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The reward gradients 

•! where it’s understood that 

�

�W
R(x! (W,b)) =

�L

�W
= ûxT

�

�b
R(x! (W,b)) =

�L

�b
= û

û = û�(W,b) x = x�(W,b)


