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Other flavors of backprop

! Recurrent backprop

—Ifor training steady states of a recurrent
network

! Backprop-through-time

—Ifor training trajectories of a recurrent
network



Steady state of a recurrent
network

ol Recurrent network

EWU-XJ. + bl.)
j

—Ifeedforward network is a special case

| Goal: maximize some function of the
activity vector

xi=f
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Implicit function theorem

! X is an implicit function of W and b

! defined as the solution of F(x, W, b) = 0
'where F(x,W,b) =x—f(Wx + b)

! assuming nonsingular Jacobian OF;/0x
! This is a local definition.



Recurrent backpropagation

| Find steady state X =f(Wx + b)

| Calculate slopes D =diag{f'(Wx +b)}

| Solve for sensitivity (D_1 - WT)ﬁ B %

I Weight update AW =nux’



Sensitivity lemma
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el |t is sufficient to calculate the derivative

with respect to the biases.

! Recurrent backprop is a way of
calculating the sensitivities
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Input as a function of output

! What input b is required to make x a
steady state?

b = f_l(K)—EVVqu
J

! This Is unique, even when output is not
a unique function of the input!



Jacobian matrix




Composition of functions

! This composition of functions may seem
more natural

b—x— R

! But this composition can also be

defined
X —b— R

! Both definitions are locally valid.



Chain rule
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Trajectory learning

ol Initialize at x(O) iterate for T time steps

\
xi(t) =f EWU j

/

| Goal: maximize some function of the
time series of activity vectors

maXR(X(l)E ,X(T))

W.b



Backpropagation through time

! Multilayer perceptron
—1Same number of neurons in each layer

—1Same weights and biases in each layer
(weight-sharing)




Forward pass
! Initial condition x(0)
u(z) =Wx(z-1)+b(z)

x(1) = £(u(r)



Backward pass

| Final condition @(7+1)=0
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Welight update

AW = nzﬁ(z‘)x(r -1)"  Ab =n2ﬁ(t)



Sensitivity lemma

| Suppose that weights and biases are
functions of time:
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Sensitivity lemma

ol If the weights and biases are constant
in time,
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Input as a function of output

x(#) = f(Wx(r-1)+b(z))
b(1) f_l(X(t))—WX(t—l)
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Jacobian matrix

b(r) =f"!(x())" Wx(¢" 1)

1) o (i
#56.(2") _$tt'(D (t))zj Wij$t"1,t'

D(t) = diag{f ‘(/M/X(t " 1)+ b(t))}




Chain rule
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Lagrangian method

! Application of the chain rule can be
confusing.

! Lagrange multipliers provide

—la “turn the crank™ method of calculating
gradients

—lanother interpretation of the backward pass



Lagrangian

Lagrange

multiplier
~
L(x,a,W,b) = R(x) — a' [f'(x) — Wx — b]
Sy —

steady state
constraint



Stationary point

x"(W,b) and t" (W, b) such that

oL _ oy
0 = aﬁ_f (x) —Wx —b
0 — oL  OR D'l WT)i

Ox  Ox



The Lagrangian equals the
reward function at a stationary
point

R(x* (W, b)) = L(x*(W,b), a* (W, b), W, b)



Sensitivities of the Lagrangian
and reward function

| All derivatives are evaluated at the
stationary point.
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The reward gradients

o, | 0L | g
WR(X (W, b)) — 0W — uUuXxX
o oL .

I where it’ s understood that

u=1u(W,b) x =x (W, b)



