Brief introduction to neurons

Sebastian Seung
Neurons have branching shapes

- Cell body or soma
 - 10-100 μm
- The branches are called “neurites”
 - 100 μm - 1 m
- Neurites are like the “wires” of the brain.
Neurons have a resting potential.

- Most of the time, the voltage of the inside of a neuron is negative relative to the outside.
- A typical value for this “resting potential” is –70 mV.
Neurons generate action potentials when stimulated

- Stimulation by current injection
- Response consisting of brief electrical pulses
 - “action potentials”
 - “spikes” or “spiking”
There is a threshold for spiking

- Sufficiently large stimuli produce action potentials.
- Smaller stimuli do not.
One neuron can cause a potential change in another.

Diagram:
- I_{stim}
- V_{pre}
- V_{post}
- Action potential
- (post)synaptic potential
Neurons communicate via synapses.

- usually neurite-to-neurite junction
- visualized with EM
- presynaptic vesicles
- postsynaptic density

Kristen Harris, synapse-web.org
Most synapses transmit chemical messages

- An action potential stimulates secretion of neurotransmitter.
- Neurotransmitter binds to receptors.
- Binding triggers a synaptic potential.
Synapses are excitatory or inhibitory

- **Excitatory**
 - tends to cause spiking in the postsynaptic neuron
 - e.g. glutamate

- **Inhibitory**
 - tends to prevent spiking in the postsynaptic neuron
 - e.g. GABA
Neurons are excitatory or inhibitory (Dale’s Law)

• Version 1: A neuron is either excitatory or inhibitory in its effects on other neurons.
• Version 2: A neuron secretes a single neurotransmitter at its synapses.
• There are exceptions to Dale’s Law.
Synapses have strengths

- Amplitude of the postsynaptic potential
 - typically less than 1 mV.
- Duration of the postsynaptic potential
 - typically 1 to 1000 ms.
- Estimate of strength
 - amplitude \times duration
 - amplitude
Dendrites and axons are types of neurites

- They can be distinguished in some types of neurons.
- Dendrites receive synaptic inputs.
- Axons make synapses on other neurons.
The axon is the output element.

- Thin and often long.
- A single axon leaves the soma, but may later branch, usually at right angles.
- Action potentials travel from the soma to the presynaptic terminals.
Dendrites are the input elements

- One or more dendrites attached to soma.
- Postsynaptic densities
- Hundreds of microns
- Graded potentials (a simplification)
- Spatial and temporal summation of synaptic inputs.
Functions of the action potential

- Computation
 - primitive form of decision-making
 - decision by comparison with a threshold
- Communication
 - transmission of signals over long distances through axons