Publications

Working Papers

D. Prelec, H.S. Seung, J. McCoy. Finding truth even if the crowd is wrong. (PDF)

2017

A Zlateski, K Lee, HS Seung, Scalable training of 3D convolutional networks on multi-and many-cores. Journal of Parallel and Distributed Computing 106, 195-204

Vishwanathan A, Daie K, Ramirez AD, Lichtman JW, Aksay ERF, Seung HS. Electron Microscopic Reconstruction of Functionally Identified Cells in a Neural Integrator. Curr Biol. 2017 Jul 24;27(14):2137-2147.

Aleksandar Zlateski and H Sebastian Seung. 2017. Compile-time optimized and statically scheduled N-D convnet primitives for multi-core and many-core (Xeon Phi) CPUs. In Proceedings of the International Conference on Supercomputing (ICS ’17). ACM, New York, NY, USA, Article 8, 10 pages. (PDF)

Prelec D, Seung HS, McCoy J. A solution to the single-question crowd wisdom problem. Nature. 2017 Jan 25;541(7638):532-535.

Ignacio Arganda-Carreras, Verena Kaynig, Curtis Rueden, Kevin W. Eliceiri, Johannes Schindelin, Albert Cardona, H. Sebastian Seung; Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification, Bioinformatics, Volume 33, Issue 15, 1 August 2017, Pages 2424

D Prelec, HS Seung, J McCoy, A solution to the single-question crowd wisdom problem. Nature 541 (7638), 532-535

2016

M.J. Greene, J.S. Kim, H.S. Seung, the EyeWirers. Analogous convergence of sustained and transient inputs in parallel on and off pathways for retinal motion computation. Cell Reports 14, 1-9 (2016). (PDF)

2015

E. Murray, J.H. Cho, D. Goodwin, T. Ku, J. Swaney, S.Y. Kim, H. Choi, Y.G. Park, J.Y. Park, A. Hubbert, M. McCue, S. Vassallo, N. Bakh, M.P. Frosch, V.J. Wedeen, H.S. Seung, K. Chung. Simple, scalable proteomic imaging for high-dimentional profiling of intact systems. Cell 163, 1500-1514 (2015). (PDF)

I. Arganda-Carreras, S.C. Turaga, D.R. Berger, D. Cireşan, A. Giusti, L.M. Gambardella, J. Schimdhuber, D. Laptev, S. Dwivedi, J.M. Buhmann, T. Liu, M. Seyedhosseini, T. Tasdizen, L. Kamentsky, R. Burget, V. Uher, X. Tan, C. Sun, T.D. Pham, E. Bas, M.G. Uzunbas, A. Cardona, J. Schindelin, H.S. Seung. Crowdsourcing the creation of image segmentation algorithms for connectomics. Front Neuroanat 142, (2015). (PDF)

K. Lee, A. Zlateski, A. Vishwanathan, H.S. Seung. Recursive Training of 2D-3D Convolutional Networks for Neuronal Boundary Prediction. NIPS Proceedings (2015). (PDF)

N. Kasthuri, K. J. Hayworth, D. R. Berger, R. L. Schalek, J. A. Conchello, S. Knowles-Barley, D. Lee, A. Vázquez-Reina, V. Kaynig, T. R. Jones, M. Roberts, J. L. Morgan, J. C. Tapia, H. S. Seung, W. G. Roncal, J. T. Vogelstein, R. Burns, D. L. Sussman, C. E. Priebe, H. Pfister, J. W. Lichtman. Saturated Reconstruction of a Volume of Neocortex. Cell 162, 648–661 (2015). (PDF)

2014

Y. Kim, K. U. Venkataraju, K. Pradhan, C. Mende, J. Taranda, S. C. Turaga, I. Arganda-Carreras, L. Ng, M. J. Hawrylycz, K. S. Rockland, H. S. Seung, P. Osten. Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Reports 10, 1-14 (2014). (PDF)

U. Sümbül, A. Zlateski, A. Vishwanathan, R. H. Masland, H.S. Seung. Automated computation of arbor densities: a step toward identifying neuronal cell types. Front Neuroanat 8 (2014). (available online)

H.S. Seung and U. Sümbül. Neuronal cell types and connectivity: lessons from the retina. Neuron 83, 1262-1272 (2014). (PDF)

J. S. Kim, M. J. Greene, A. Zlateski, K. Lee, M. Richardson, S. C. Turaga, M. Purcaro, M. Balkam, A. Robinson, B. F. Behabadi, M. Campos, W. Denk, H. S. Seung, and EyeWirers. Space-time wiring specificity supports direction selectivity in the retina. Nature 509, 331-6 (2014). (PDF)

G. S. Tomassy, D. R. Berger, H. H. Chen, N. Kasthuri, K. J. Hayworth, A. Vercelli, H. S. Seung, J. W. Lichtman, and P. Arlotta. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344, 319-24 (2014). (PDF)

N. Miyasaka, I. Arganda-Carreras, N. Wakisaka, M. Masuda, U. Sümbül, H. S. Seung, and Y. Yoshihara. Olfactory projectome in the zebrafish forebrain revealed by genetic single-neuron labelling. Nat Commun. 5, 3639 (2014). (PDF)

U. Sümbül, S. Song, K. McCulloch, M. Becker, B. Lin, J. R. Sanes, R. H. Masland, and H. S. Seung. A genetic and computational approach to structurally classify neuronal types. Nat Commun. 5, 3512 (2014). (PDF)

I. R. Wickersham, H. A. Sullivan, and H. S. Seung. Axonal and subcellular labelling using modified rabies viral vectors. Nat Commun. 4, 2332 (2014). (PDF)

2013

M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and W. Denk. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500, 168-74 (2013). (PDF)

2012

S. Seung and R. Yuste. “Neural Networks.” Appendix E of Principles of Neural Science, 5th ed. Eds. E. R. Kandel et al. New York: McGraw-Hill. pp. 1581-1599 (2012). (PDF)

J. C. Tapia, J. D. Wylie, N. Kasthuri, K. J. Hayworth, R. Schalek, D. R. Berger, C. Guatimosim, H. S. Seung, and J. W. Lichtman. Pervasive synaptic branch removal in the mammalian neuromuscular system at birth. Neuron 74, 816-29 (2012). (PDF)

A. J. Apicella, I. R. Wickersham, H. S. Seung, and G. M. Shepherd. Laminarly orthogonal excitation of fast-spiking and low-threshold-spiking interneurons in mouse motor cortex. J Neurosci. 32, 7021-33 (2012). (PDF)

T. Kiritani, I. R. Wickersham, H. S. Seung, and G. M. Shepherd. Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex. J Neurosci. 32, 4992-5001 (2012). (PDF)

T. Ragan, L. R. Kadiri, K. U. Venkataraju, K. Bahlmann, J. Sutin, J. Taranda, I. Arganda-Carreras, Y. Kim, H. S. Seung, and P. Osten. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 9, 255-8 (2012). (PDF)

2011

H. S. Seung. Neuroscience: Towards functional connectomics. Nature 471, 70-2 (2011). (PDF)

V. Jain, S. Turaga, K. Briggman, M. Helmstaedter, W. Denk, and H. S. Seung. Learning to agglomerate superpixel hierarchies. Adv. Neural Info. Proc. Syst. 24, 648-656 (2011). (PDF)

2010

A. P. Weible, L. Schwarcz, I. R. Wickersham, L. Deblander, H. Wu, E. M. Callaway, H. S. Seung, and C. G. Kentros. Transgenic targeting of recombinant rabies virus reveals monosynaptic connectivity of specific neurons. J Neurosci. 30, 16509-13 (2010). (PDF)

V. Jain, H. S. Seung, and S. C. Turaga. Machines that learn to segment images: a crucial technology for connectomics.Curr Opin Neurobiol. 20, 653-66 (2010). (PDF)

S. C. Turaga, J. F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman, W. Denk, and H. S. Seung. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511-38 (2010). (PDF)

I. R. Wickersham, H. A. Sullivan, and H. S. Seung. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nat Protoc. 5, 595-606 (2010). (PDF)

V. Jain, B. Bollmann, M. Richardson, D. Berger, M. Helmstaedter, K. Briggman, W. Denk, J. Bowden, J. Mendenhall, W. Abraham, K. Harris, N. Kasthuri, K. Hayworth, R. Schalek, J. Tapia, J. Lichtman, and H. S. Seung. Boundary Learning by Optimization with Topological Constraints. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2488-2495 (2010). (PDF

2009

S. C. Turaga, K. L. Briggman, M. Helmstaedter, W. Denk, and H. S. Seung. Maximin affinity learning of image segmentation. CoRR. abs/0911.5372 (2009). (PDF)

J. Wang, M. T. Hasan, and H. S. Seung. Laser-evoked synaptic transmission in cultured hippocampal neurons expressing Channelrhodopsin-2 delivered by adeno-associated virus. J. Neurosci. Methods 183, 165-175 (2009). (PDF)

Y. Loewenstein, D. Prelec, and H. S. Seung. Operant matching as a Nash equilibrium of an intertemporal game. Neural Computation 21, 2755-2773 (2009). (PDF)

H. S. Seung. Reading the Book of Memory: Sparse Sampling versus Dense Mapping of Connectomes. Neuron 62, 17-29 (2009). (PDF)

V. Jain and H. S. Seung. Natural Image Denoising with Convolutional Networks. Advances in Neural Info. Proc. Systems 21 (Proceedings of NIPS ’08), 769-776. Cambridge, MA: MIT Press, 2009. (PDF)

2007

V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. L. Briggman, M. N. Helmstaedter, W. Denk, and H. S. Seung. Supervised Learning of Image Restoration with Convolutional Networks. Proceedings: IEEE 11th International Conference on Computer Vision (ICCV) (2007). (PDF)

C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld. Phase-referenced probe interferometer for biological surface profiling and displacement measurements. Rev. Sci. Instrum. 78, 123703 (2007). (PDF)

I. R. Fiete, M. S. Fee, and H. S. Seung. Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. J. Neurophysiol. 98, 2038-57 (2007). (PDF)

C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H. S. Seung, R. R. Dasari, and M. S. Feld. Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy. Opt. Lett. 32, 1572-4 (2007). (PDF)

U. Rokni, A. G. Richardson, E. Bizzi, and H. S. Seung. Motor learning with unstable neural representations. Neuron 54, 65366 (2007). (PDF)

D. Z. Jin, F. M. Ramazanoglu, and H. S. Seung. Intrinsic bursting enhances the robustness of a neural network model of sequence generation by avian brain area HVC. J. Comput. Neurosci. 23, 283-299 (2007). (PDF)

2006

Y. Loewenstein and H. S. Seung. Operant matching is a generic outcome of synaptic plasticity based on the covariance between reward and neural activity. Proc. Natl. Acad. Sci. USA 103, 15224-15229 (2006). (PDF)

I. R. Fiete and H. S. Seung. Gradient learning in spiking neural networks by dynamic perturbation of conductances. Phys. Rev. Lett. 97, 048104 (2006). (PDF)

V. Jain, V. Zhigulin, and H. S. Seung. Representing part-whole relationships in recurrent neural networks. Adv. Neural Info. Proc. Syst. 18, 563–70 (2006). (PDF)

2005

G. S. Corrado, L. P. Sugrue, H. S. Seung, and W. T. Newsome. Linear-nonlinear-Poisson models of primate choice dynamics. J. Exp. Anal. Behav. 84, 581-617 (2005). (PDF)

D. Z. Jin, V. Dragoi, M. Sur, and H. S. Seung. Tilt aftereffect and adaptation-induced changes in orientation tuning in visual cortex. J. Neurophysiol. 94, 4038-4050 (2005). (PDF)

R. Tedrake, T. W. Zhang, and H. S. Seung. Learning to Walk in 20 Minutes. Proceedings of the Fourteenth Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, CT, 2005. (PDF)

J. Werfel, X. Xie, and H. S. Seung. Learning curves for stochastic gradient descent in linear feedforward networks. Neural Comput. 17, 2699-2718 (2005). (PDF) – Earlier version: J. Werfel, X. Xie, and H. S. Seung. Learning curves for stochastic gradient descent in linear feedforward networks. Adv. Neural Info. Proc. Syst. 16 (2004). (PDF)

A. Starovoytov, J. Choi, and H. S. Seung. Light-directed electrical stimulation of neurons cultured on silicon wafers. J. Neurophysiol. 93, 1090-1098 (2005). (PDF)

2004

C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld. Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer. Opt. Lett. 29, 2028-2030 (2004). (PDF)

B. D. Mensh, J. Werfel, and H. S. Seung. BCI Competition 2003 – Data set Ia: combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals. IEEE Trans. Biomed. Eng. 51, 1052-1056 (2004). (PDF)

I. R. Fiete, R. H. R. Hahnloser, M. S. Fee, and H. S. Seung. Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong. J. Neurophysiol. 92, 2274-2282 (2004). (PDF)

G. Major, R. Baker, E. Aksay, H. S. Seung, and D. W. Tank. Plasticity and tuning of the time course of analog persistent firing in a neural integrator. Proc. Natl. Acad. Sci. USA 101, 7745-7750 (2004). (PDF)

G. Major, R. Baker, E. Aksay, B. Mensh, H. S. Seung, and D. W. Tank. Plasticity and tuning by visual feedback of the stability of a neural integrator. Proc. Natl. Acad. Sci. 101, 7739-7744 (2004). (PDF)

X. Xie and H. S. Seung. Learning in neural networks by reinforcement of irregular spiking. Phys. Rev. E69, 041909 (2004). (PDF)

B. D. Mensh, E. Aksay, D. D. Lee, H. S. Seung, and D. W. Tank. Spontaneous eye movements in goldfish: Oculomotor integrator performance, plasticity, and dependence on visual feedback. Vision Res. 44, 711-726 (2004). (PDF)

R. Tedrake, T. W. Zhang, and H. S. Seung. Stochastic Policy Gradient Reinforcement Learning on a Simple 3D Biped. Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), 2849-2854, Sendai, Japan, September 2004. (PDF)

R. Tedrake, T. W. Zhang, M.-F. Fong, and H. S. Seung. Actuating a Simple 3D Passive Dynamic Walker. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 5, 4656-4661, New Orleans, LA, April 2004. (PDF)

2003

H. S. Seung. Learning in spiking neural networks by reinforcement of stochastic synaptic transmission. Neuron 40, 1063-1073 (2003). (PDF)

E. Aksay, R. Baker, H. S. Seung, and D. W. Tank. Correlated discharge among cell pairs within the oculomotor horizontal velocity-to-position integrator. J. Neuroscience 23, 10852-10858 (2003). (PDF)

M. S. Goldman, J. H. Levine, G. Major, D. W. Tank, and H. S. Seung. Robust Persistent Neural Activity in a Model Integrator with Multiple Hysteretic Dendrites per Neuron. Cerebral Cortex 13, 1185-1195 (2003). (PDF)

E. Aksay, G. Major, M. S. Goldman, R. Baker, H. S. Seung, and D. W. Tank. History dependence of rate covariation between neurons during persistent activity in an oculomotor integrator. Cerebral Cortex 13, 1173-1184 (2003). (PDF)

H. S. Seung. Amplification, Attenuation, and Integration. The Handbook of Brain Theory and Neural Networks: Second Edition (M. A. Arbib, Editor) Cambridge, MA: MIT Press, pp. 94-97 (2003). (PDF)

R. H. R. Hahnloser, H. S. Seung, and J. J. Slotine. Permitted and forbidden sets in symmetric threshold-linear networks. Neural Comput. 15, 621-38 (2003). (PDF) – Earlier version: R. H. R. Hahnloser, H. S. Seung. Permitted and Forbidden Sets in Symmetric Threshold Linear Networks. Adv. Neural Info. Proc. Syst. 13, 217-223 (2001). (PDF)

X. Xie and H. S. Seung. Equivalence of backpropagation and contrastive Hebbian learning in a layered network. Neural Comput. 15, 441-54 (2003). (PDF)

2002

X. Xie, R. H. R. Hahnloser, and H. S. Seung. Double-ring network modeling of the head-direction system. Phys. Rev. E66, 041902 (2002). (PDF)

X. Xie, R. H. R. Hahnloser, and H. S. Seung. Selectively grouping neurons in recurrent networks of lateral inhibition. Neural Comput. 14, 2627-46 (2002). (PDF) – Earlier version: X.-H. Xie, R. Hahnloser and H. S. Seung. Learning winner-take-all competition between groups of neurons in lateral inhibitory networks. Adv. Neural Info. Proc. Syst. 13, 350-356 (2001). (PDF)

M. S. Goldman, C. R. Kaneko, G. Major, E. Aksay, D. W. Tank, and H. S. Seung. Linear regression of eye velocity on eye position and head velocity suggests a common oculomotor neural integrator. J. Neurophysiol. 88, 659-65 (2002). (PDF)

D. Z. Jin and H. S. Seung. Fast computation with spikes in a recurrent neural network. Phys. Rev. E65, 051922 (2002). (PDF)

R. Tedrake and H. S. Seung. Improved Dynamic Stability using Reinforcement Learning. 5th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), 341-348, Paris, France, September 2002. (PDF)

2001

E. Aksay, G. Gamkrelidze, H. S. Seung, R. Baker, and D. W. Tank. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nature Neurosci. 4, 184- 93 (2001). (PDF)

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. Adv. Neural Info. Proc. Syst. 13, 556-562 (2001). (PDF)

2000

H. S. Seung and D.D. Lee. The Manifold ways of perception. Science 290, 2268-69 (2000). (PDF)

H. S. Seung. Half a century of Hebb. Nature Neurosci. 3, 1166-67 (2000). (PDF)
R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 405, 947-51 (2000). (PDF)

C. Dioro and R. P.N. Rao. Neural Circuits in Silicon. Nature News and Views, 405, 891-2 (2000). (PDF)

X.-H. Xie and H. S. Seung. Spike-based learning rules and stabilization of persistent neural activity. Adv. Neural Info. Proc. Syst. 12, 199-205 (2000). (PDF)

E. Aksay, R. Baker, H. S. Seung, and D. W. Tank. Anatomy and Discharge Properties of Pre-Motor Neurons in the Goldfish Medulla That Have Eye-Position Signals During Fixations. J. Neurophysiol. 84, 1035-49 (2000). (PDF)

H. S. Seung, D. D. Lee, B. Y. Reis, D. W. Tank. Stability of the Memory of Eye Position in a Recurrent Network of Conductance-Based Model Neurons. Neuron 26, 259-271 (2000). (PDF)

H. S. Seung, D. D. Lee, B. Y. Reis, D. W. Tank. The autapse: a simple illustration of short-term analog memory storage by tuned synaptic feedback. J. Comput. Neurosci. 9, 171-85 (2000). (PDF)

1999

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788-791 (1999). (PDF)

B. W. Mel. Computational neuroscience: Think positive to find parts. Nature News and Views, 401, 759-760 (1999). (PDF)

1998

A. Gelperin, J. L. Dawson, S. M. Cazares. and H. S. Seung. Rapid fruit cultivar identification by an artificial olfactory system. Proceedings of the 5th International Symposium on Olfaction and the Electronic Nose 263-74 (1998).

D. D. Lee and H. S. Seung. Learning in intelligent embedded systems. (PDF)

H. S. Seung. Continuous attractors and oculomotor control. Neural Netw. 11, 1253-58 (1998). (PDF)

H. S. Seung. Learning continuous attractors in recurrent networks. Adv. Neural Info. Proc. Syst. 10, 654-60 (1998). (PDF)

H. S. Seung, T. J. Richardson, J. C. Lagarias, and J. J. Hopfield. Minimax and Hamiltonian dynamics of excitatory-inhibitory networks. Adv. Neural Info. Proc. Syst. 10, 329-35 (1998). (PDF)

D. D. Lee and H. S. Seung. A neural network based head tracking system. Adv. Neural Info. Proc. Syst. 10, 908-14 (1998). (PDF)

J.-H. Oh and H. S. Seung. Learning generative models with the up-propagation algorithm. Adv. Neural Info. Proc. Syst. 10, 605-11 (1998). (PDF)

N. D. Socci, D. D. Lee, and H. S. Seung. The rectified Gaussian distribution. Adv. Neural Info. Proc. Syst. 10, 350-6(1998). (PDF)

1997

H. S. Seung. Pattern analysis and synthesis in attractor neural networks. Theoretical Aspects of Neural Computation: A Multidisciplinary Perspective, Proceedings of TANC’97. Springer-Verlag (1997). (PDF)

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the Query by Committee algorithm. Machine Learning 28, 133-168 (1997). (PDF) – Earlier version: Information, prediction, and query by committee. Adv. Neural Info. Proc. Syst. 5, 483-490 (1993).

D. D. Lee, B. Y. Reis, H. S. Seung, and D. W. Tank. Nonlinear network models of the oculomotor integrator. Computational Neuroscience: Trends in Research 1997. New York, Plenum Press. (PDF)

P. Riegler and H. S. Seung. Vapnik-Chervonenkis entropy of the spherical perceptron. Phys. Rev. E55, 3283-7 (1997). (PDF)

D. D. Lee and H. S. Seung. Unsupervised learning by convex and conic coding. Adv. Neural Info. Proc. Syst. 9, 515-521 (1997). (PDF)

1996

H. S. Seung. How the brain keeps the eyes still. Proc. Natl. Acad. Sci. USA 93, 13339-44 (1996). (PDF)

D. Haussler, M. J. Kearns, H. S. Seung, and N. Tishby. Rigorous learning curve bounds from statistical mechanics. Machine Learning 25, 195-236 (1996), and Proceedings of the Seventh Annual ACM Workshop on Computational Learning Theory, 76-87 (1994). (PDF)

1995

H. S. Seung. Annealed theories of learning. Neural Networks: The Statistical Mechanics Perspective, Proceedings of the CTP-PBSRI Joint Workshop on Theoretical Physics, World Scientific, 32-41 (1995). (PDF)

H. Sompolinsky, N. Barkai, and H. S. Seung. On-line learning of dichotomies: algorithms and learning curves. In Neural Networks: The Statistical Mechanics Perspective, Proceedings of the CTP-PBSRI Joint Workshop on Theoretical Physics, World Scientific, 105-130 (1995).

N. Barkai, H. S. Seung, and H. Sompolinsky. Local and global convergence of on-line learning. Phys. Rev. Lett. 75, 1415-18 (1995).
N. Barkai, H. S. Seung, and H. Sompolinsky. On-line learning of dichotomies. Adv. Neural Info. Proc. Syst. 7, 303-310 (1995). (PDF)

M. Kearns and H. S. Seung. Learning from a population of hypotheses. Machine Learning 18, 255-276 (1995) and Proceedings of the Sixth Annual Workshop on Computational Learning Theory, 101-110 (1993). (PDF)

1993 and earlier

N. Barkai, H. S. Seung, and H. Sompolinsky. Scaling laws in learning of classification tasks. Phys. Rev. Lett. 70, 3167-70 (1993).

H. S. Seung and H. Sompolinsky. Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA 90, 10749-53 (1993).

A. Borst, M. Egelhaaf, and H. S. Seung. Two-dimensional motion perception in flies. Neural Comput. 5, 856-868 (1993).

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, 287-94 (1992). (PDF)

H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from examples. Phys. Rev. A45, 6056-91 (1992). Earlier version: Learning curves in large neural networks. Proceedings of the Fourth Annual ACM Workshop on Computational Learning Theory. 112-126 (1991).

H. Sompolinsky, N. Tishby, and H. S. Seung. Learning from examples in large neural networks. Phys. Rev. Letters 65, 1683-6 (1990).

D. A. Huse and H. S. Seung. Possible vortex-glass transition in a model random superconductor. Phys. Rev. B42, 1059-61 (1990).

D. R. Nelson and H. S. Seung. Theory of melted flux liquids. Phys. Rev. B39, 9153-74 (1989).

H. S. Seung and D. R. Nelson. Defects in flexible membranes with crystalline order. Phys. Rev. A38, 1005-18 (1988).